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profile (g). It is also observed that the velocity profiles (f’, s’) 
at any two values of I cross each other towards the edge of 
the boundary layer. A similar trend has been observed by 
Yang [1 l] for the unsteady, two-dimensional, stagnation- 
point flow over a stationary wall. 

4. CONCLUSIONS 

The effects of the unsteadiness in the wall velocities and 
the nature of the stagnation point on the skin friction, heat 
transfer and mass flux of diffusing species are found to be 
appreciable. The Prandtl number and the Schmidt number 
strongly affect the heat transfer and mass flux of diffusing 
species, respectively. The velocity temperature and con- 
centration profiles are observed to decay exponentially. 
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1. INTRODUCTION 

HEATING or evaporation of non-Newtonian solutions by 
means of falling film shell-and-tube heat exchangers is some- 
times practised in the food and polymer processing indus- 
tries. The application of the falling film principle has the 
advantage of short residence time which is most desirable 
for heat-sensitive materials. In short columns and when the 
viscosity of the solution is high, the tilm flow may be laminar 
in nature. Little information, however, is available on the 
heat transfer rate in these liquid films. Murthy and Sarma 
[l] investigated analytically heating in the entrance region of 
an accelerating, non-Newtonian, power-law-model, laminar 
falling film flowing down an inclined plane with constant 
wall temperature. Integral solutions for the boundary-layer 
equations of momentum and energy were obtained in which 
the Nusselt number for the thermally developing and fully 
developed regions can be calculated. Heating with constant 
wall temperature and a fully developed velocity protie 
was also analyzed both theoretically and experimentally 
by Stucheli and Widmer [2] for Newtonian and non- 
Newtonian power-law model falling film on an inclined 
plane. The viscosity was assumed to be temperature depend- 
ent. The objectives of the present research are to show that 
a simple analytical solution can be easily obtained for 
heating or evaporation in the thermal entrance and fully 
developed regions of a non-Newtonian, power-law model 

falling film with the boundary condition of constant wall 
heat flux or constant wall temperature. 

2. THEORY 

A non-Newtonian liquid film of average film thickness, 6, 
is in steady laminar flow down a vertical plane under the 
action of gravity. The liquid flow is characterized by a power- 
law rheological model. The velocity profile of the falling film 
is assumed to be fully developed at the start of the heat 
transfer section. By a balance of shear and gravity forces, 
the dimensionless velocity protile can be derived, with the 
boundary condition of no slip at the wall (y = 0) and zero 
interfacial shear at the gas-liquid interface (y = a), as 

v*(n) = V(q)/U, = l-(l-r7)‘“+‘“” (1) 

where r~ = y/6 and y is the distance measured from the wall 
into the liquid film with x being the coordinate in the flow 
direction. The average velocity and surface velocity can be 
derived as 

U,,/U, = (n + 1)/(2n + 1) (2) 
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The film thickness 6 is where 

6={[(2~+~~/~lQr”“+“/(~)‘1*n+‘1 (4) e-e, = f A-N.(~)exp(-1~x*)+F(~) ,=, , , 

WI 
where Q/B is the flow rate per unit periphery, K is the 
consistency index and n is the power-law index. 

A,exp(-lax*) (17) 

2.1. Heating with constant wall heat flux em-e,= 
s 

‘cr*~e-e,jdrl 
The energy equation is represented, in dimensionless form, 0 I( > 

g (18) 

by In equation (17), I, is the eigenvalue, N, is the eigenfunction 

U’(q)& = $ (5) 
and A, is the series coefficient as determined by 

where 0 is defined here as 0 = (T-T,,)/(q,G/k), 
Ai = 

s 
u*[-F(tl)lNtdv 

x* = xc1/6’11,. The boundary conditions are 
0 I’s 

U*N,2 dq. (19) 
0 

x* = 0 e=o 

q=O !!=_I 
a7 

20 

(6) 2.2. Heating with constant wall temperature 
The energy equation is the same as equation (5) where 

(7) 
0 is now defined as 0 = (T,,- r)/(Tw - T,,). The boundary 
conditions are 

x* =o. e= i (20) 
q=l ” = 0. 

all 
(8) q=o, e=o (21) 

Equations (5)-(8) can be reduced by linear superposition to tj = 0, aejatj = 0. (22) 
two sets of equations [3, 41 by letting 

The solutions can be obtained directly by the method of 

e(x*,q) = 6(x*,q)+e,(x*,q) (9) separation of variables [3, 41. 0, and NM, can be derived as 

where 0, and 0, represent the entrance region and thermally 
developed solutions respectively. The solution of f& can be em = 
obtained by a method similar to Yih and Liu’s [5]. [ 

5 A,exp (-1:x*)N:(0)/12: 
n+l 

~ (23) 
1= I I:‘( > 2n+l 

Thermally fully developed region. For film heating, when 
the velocity and temperature profiles are fully developed Nu, = f A, exp (-A:x*)N:(O) 

[ I= I I/ 8, (24) 

a4 de,, de,, - = ~ = __ = constant 
ax* dn* dx* (IO) where the local heat transfer coefficient for heating with 

constant wall temperature is defined as 

where 0, and 0, are, respectively, the dimensionless bulk 
average and wall temperatures. Equation (10) shows that e2 h, = -kg 
is of the form I I ay y=O 

Vw- TtrJ 

e2 = (constant)x*+F(q). (11) When x* -P cc the asymptotic Nusselt number can be 

The set ofequations and boundary conditions for ez obtained obtained from equations (23) and (24) by retaining only the 

by linear superposition are integrated to give first term in the summation series to give 

Nu, = (25) 

(12) 
It can be seen that F(q) is the second term on the RHS of 

2.3. Evaporation with constant wall heatjlux 

equation (12) and that 
When the evaporation rate is not very large, the average 

film thickness can be regarded as constant. The energy 

(13) 
equation, equation (5), still applies but f3 is now defined 
as 0 = (T- T,,)/(q,G/k) and the boundary conditions are 

an 2n+l 
m= 
dx* n+l 

X* =o, e = 0 

tj = 0, aejatj = -1 
(26) 

(27) 

The local heat transfer coefficient for heating with constant V=I. e=o. 128) 
wall heat flux is defined as h, = q,/(T,- T,) and the Nusselt 

, , \ , 

number is equal to Nu, = h, * 6/k = I/@, - 0,). The asymp- Again we let tI = 8, + 8, by linear superposition. For film 

totic Nusselt number can be derived as evaporation, when the velocity and temperature profiles are 

N~={(syI’u*[j& 

fully developed, a&/ax* = 0 and e2 can be obtained as 

e2 = dv. (29) 

-[lJ*d~)d~]dilj’. (15) The local heat transfer coefficient for evaporation with con- 
stant wall heat flux is defined as h, = q,J( T, - T,,) and 

Thermal entrance region. The set of equations and bound- 
ary conditions for 0, obtained by linear superposition can be 
solved by the method of separation of variables in a manner 

Nu, = i/e, = 1 
is 

dv= 1 (30) 
0 

analogous to that described by Yih and Chen [4]. The result 8, is solved by separation of variables and the series 
for Nu, is coefficient A, is determined by 

A, = 
s 

U*(-MN,@ lJ*N:dij. (31) 
II 
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1. Comparison of local Nusselt number for heating with constant wall heat flux and constant 
temperature. 

The local Nusselt number is 

Nu, = f A,N,(O)exp(--lfx*)+l L 1 
-I 

(32) 
i= I 

2.4. Evaporation with constant wall temperature 
Equation (5) still applies but 0 is now defined as 

0 = (T, - T)/( T, - T,,,). The boundary conditions are 

x* = 0, f3 = 1 (33) 

q=o, f3=0 (34) 

V)=l, 8=1. (35) 

We again let 0 = 8, + &, 0, and Nu, are solved to give 

02= ‘dr/ 
s 

(36) 
0 

ae, ’ 
Num=ayIs=o= 0 I s d’l = 1 (37) 

8, is solved also to give A, and Nu, as 

Ai= ‘(I-&)U*N,dt) 
s 

lJ*N; dr) (38) 
0 

Nu, = 2 A, exp (- I:x*)N;(O) + 1. 
z= I 

(39) 

3. RESULTS AND DISCUSSION 

Extensive numerical results of Nu,, the first 15 eigenvalues, 
series coefficients and associated quantities are obtained for 
various values of the power-law index of n = l/3, 0.5, 1 .O, 
1.25, 2.5 covering a range of practical interest. For short 
contact times of heat transfer, the Leveque solution is valid 
for either heating or evaporation, 

Nu, = 0.538 +t 
( > 

“3 (,*)-Ii3 for constant T, (40) 

N,,, = 0.651 ?$ 
( > 

“3 (,*)-‘I3 for constant Q~. (41) 

Heating with constant wall temperature corresponds 
to the problem of solid dissolution in a falling film and has 

wall 

been studied by Mashelkar and Chavan [6], and Yih and 
Huang [3] who presented the same eigenvalues. Figure 1 
gives a comparison of Nu, for the two different boundary 
conditions. At a given n, the Nusselt number for heating 
with constant wall heat flux is always larger than that for 
heating with constant wall temperature. However, heating 
with constant wall temperature generates a shorter thermal 
entrance length than heating with constant wall heat flux. 
For a fixed x*, Nu, increases with decreasing values of n. 
However, the thermal entrance length also increases with 
decreasing values of n. The first 10 eigenvalues for evap- 
oration with constant wall temperature are shown in Table 
1, A comparison of heating and evaporation is shown in Fig. 
2. At very small x*, the Nusselt number for heating and 
evaporation are the same and conform to the Leveque 
solution. However, with increasing x*, the Nusselt number 
for heating becomes larger than that for evaporation. Also 
the thermal entrance length for heating is always shorter 
than that for evaporation. A direct application of this work 
would be to devise a new method for measuring the thermal 
conductivity of dilute polymeric solutions. If the variation 
of viscosity with temperature is important as examined by 
Stucheli and Widmer [2], the present method of solution can 
easily incorporate this effect too [7]. 

Table 1. First 10 eigenvalues for evaporation with constant 
wall temperature 

i 2.50 1.25 lroo 0.50 t/3 

1 3.97257 3.75093 3.67232 3.43818 3.32752 
2 8.28298 7.83153 7.66884 7.16549 6.90498 
3 12.5997 11.9155 11.6679 10.8968 10.4938 
4 16.9178 16.0001 15.6675 14.6295 14.0855 
5 21.2365 20.0849 19.6673 18.3628 17.6784 
6 25.5553 24.1698 23.6672 22.0964 21.2717 
I 29.8742 28.2547 27.6671 25.8302 24.8654 
8 34.1932 32.3397 31.6671 29.5641 28.4594 
9 38.5123 36.4248 35.6671 33.2982 32.0534 

10 42.8315 40.5099 39.6672 37.0323 35.6476 
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FIG. 2. Comparison of local Nusselt number for heating and evaporation with constant wall heat flux. 
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1. INTRODUCTION 

THE SUBJECT of enhanced heat transfer (passive or active) 
can be divided into two areas : (i) improvement of heat trans- 
fer rates at solid surfac+fluid interfaces ; and (ii) improve- 
ment in transport capabilities of the conducting fluid. In the 
former case it has been shown theoretically and exper- 
imentally that the oscillation of the surface can increase the 
heat transfer rate, and various geometries and techniques 
have been explored [l&3]. In the latter case a variety of 
methods have been considered, including wicked or gravity- 
driven heat pipes and packed-bed heat pipes 141. Recently 
the laminar oscillation of an otherwise stationary fluid has 
also been studied [5-I I]. The oscillation technique, which is 
the subject of this study, is based on the periodic longitudinal 
convectiv+lateral diffusive thermal energy transport in the 

presence of a longitudinal temperature gradient. This can 
result in a very significant increase in the longitudinal trans- 
port capability of the fluid. 

This idea was initially applied to the enhancement of longi- 
tudinal oxygen dispersion in pulsating flows in pulmonary 
systems [5, 6, 81 and has recently been applied to axial 
transport of thermal energy [9-l 11. 

The available studies of this phenomenon, which are based 
on the application of the conservation equations to periodic 
laminar flows, have led to the prediction of the longitudinal 
heat transfer rates [lo, 1 I]. Closed-form solutions have been 
found for one-dimensional and linear velocity and tem- 
perature fields. Experimentally [9], enhanced heat transfer 
rates have been found using water as the fluid, l-mm-ID 
capillary tubes, oscillation frequencies between 2 and 8 Hz 
and tidal displacements (i.e. the average particle dis- 


